Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tadeusz Lis, Vasyl Kinzhybalo* and Krzysztof Zieba

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland

Correspondence e-mail: kinzhybalo@gmx.net

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.054$
$w R$ factor $=0.097$
Data-to-parameter ratio $=18.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

A trinuclear mixed-valence manganese carboxylate: tris(acetic acid- $\kappa \mathrm{O}$)- μ_{3}-oxo-hexakis (μ_{2}-trichloro-acetato- $\left.\kappa^{2} O: O^{\prime}\right)$ trimanganese (II,III,III)

The title mixed-valence manganese carboxylate, $\left[\mathrm{Mn}_{3}\left(\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{O}_{2}\right)_{6} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{3}\right]$, was synthesized starting from an acetic acid solution of $\mathrm{Mn}\left(\mathrm{CCl}_{3} \mathrm{COO}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{CCl}_{3} \mathrm{COOH}$ and KMnO_{4}. The molecule features a planar trinuclear $\mu_{3}-$ oxo-centered manganese(II,III,III) complex. Differences in the geometric parameters of the Mn atoms due to strong JahnTeller effects in the Mn^{3+} ions allow the metal atoms with oxidation states +2 and +3 to be distinguished.

Comment

A number of trinuclear oxo-centered mixed-valence manganese carboxylates are known (Baikie et al., 1980; CañadaVilalta et al., 2004; Li et al., 2002; Zhao et al., 2003, and references therein). These compounds might have interesting magnetic properties or biological activity. Recent studies on trinuclear manganese trichloroacetate (Kim \& Cho, 2004; Tsai et al., 2003) revealed the $D_{3 h}$ symmetry of $\left[\mathrm{Mn}_{3} \mathrm{O}\left(\mathrm{CCl}_{3}\right.\right.$ $\mathrm{COO})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$], which results in chemical equivalence of all three manganese cations. Thus, the metal centers are subject either to electronic delocalization or to rapid intramolecular electron transfer (Vincent et al., 1987). Simple substitution of the water molecules by other residues which break the $D_{3 h}$ symmetry of the Mn_{3} triangle enables accurate recognition of each metal oxidation state. In this work, we report the synthesis and the structure determination of a trinuclear oxocentered mixed-valence manganese trichloroacetate with ordered Mn^{3+} and Mn^{2+} sites, viz. $\left[\mathrm{Mn}_{3} \mathrm{O}\left(\mathrm{CCl}_{3} \mathrm{COO}\right)_{6}\left(\mathrm{CH}_{3-}\right.\right.$ $\mathrm{COOH})_{3}$], (I).

The title compound is a triangular $\left[\mathrm{Mn}_{3} \mathrm{O}\left(\mathrm{CCl}_{3} \mathrm{COO}\right)_{6}\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{3}\right]$ complex, as shown in Fig. 1. The trichloro-

Received 12 October 2005 Accepted 17 October 2005 Online 27 October 2005

Figure 1
View of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown with dashed lines.
acetate anions bridge adjacent Mn atoms. The central O atom deviates by 0.017 (2) \AA from the plane of the three Mn atoms. The coordination environment of each Mn atom is completed by terminal acetic acid molecules. The oxidation state of each Mn cation can clearly be recognized because of strong JahnTeller effects in the Mn^{3+} environment and longer distances in the Mn^{2+} coordination sphere. Atoms Mn 1 and Mn 2 can easily be recognized as Mn^{3+} cations, and Mn 3 as Mn^{2+}. The coordination environment of the Mn^{2+} cation is much less distorted and is characterized by longer $\mathrm{Mn}-\mathrm{O}$ distances ranging from 2.139 (3) to 2.188 (3) \AA (Table 1). The $\mathrm{Mn}-\mathrm{Mn}$ distances are comparable to those observed in other μ_{3}-oxo manganese(II,III,III) complexes. The two $\mathrm{Mn}^{2+} \ldots \mathrm{Mn}^{3+}$ distances are somewhat longer than the $\mathrm{Mn}^{3+} \ldots \mathrm{Mn}^{3+}$ distance. The hydroxy groups form strong intramolecular contacts with O atoms of the trichloroacetate anions. In turn, methyl H atoms take part in weak intermolecular hydrogen bonds (Table 2).

Experimental

$\mathrm{Mn}\left(\mathrm{CCl}_{3} \mathrm{COO}\right)_{2} 3 \mathrm{H}_{2} \mathrm{O}\left(2.12 \mathrm{~g}\right.$; Shova et al., 1996) and $\mathrm{CCl}_{3} \mathrm{COOH}$ (20.60 g) were dissolved in $99.5 \% \mathrm{CH}_{3} \mathrm{COOH}(210 \mathrm{ml})$. The solution was stirred and heated to 323 K for 2.5 h . After half an hour, a portion of KMnO_{4} was added (0.25 g total). The reaction mixture was then heated to 373 K for 30 min . The red-brown mixture was allowed to stand at room temperature. After a week, dark-brown crystals appeared.

Crystal data

$\left[\mathrm{Mn}_{3}\left(\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{O}_{2}\right)_{6} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{3}\right]$
$M_{r}=1335.20$
Triclinic, $P \overline{1}$
$a=10.121$ (3) Å
$b=10.424$ (3) \AA
$c=22.891$ (5) \AA
$\alpha=88.01$ (3) ${ }^{\circ}$
$\beta=79.45(3)^{\circ}$
$\gamma=65.94(3)^{\circ}$
$V=2165.8(12) \AA^{3}$
$Z=2$
$D_{x}=2.047 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Kuma KM-4 CCD κ-geometry diffractometer
ω scans
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003) $T_{\text {min }}=0.691, T_{\text {max }}=0.899$
30649 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.097$
$S=1.16$
9906 reflections
532 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{\mathrm{m}}=1.943 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in $\mathrm{CHCl}_{3} / \mathrm{CHBr}_{3}$
Mo $K \alpha$ radiation
Cell parameters from 18242 reflections
$\theta=0-27.6^{\circ}$
$\mu=2.04 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Parallelepiped, dark brown $0.2 \times 0.2 \times 0.05 \mathrm{~mm}$

9906 independent reflections
8642 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-13 \rightarrow 12$
$k=-13 \rightarrow 13$
$l=-29 \rightarrow 29$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0043 P)^{2}\right. \\
& \quad+12.065 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.64 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.55 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

Mn1-O1	$1.826(3)$	Mn2-O12	$2.182(3)$
Mn1-O11	$1.952(3)$	Mn3-O42	$2.139(3)$
Mn1-O62	$1.965(3)$	Mn3-O61	$2.149(3)$
Mn1-O71	$1.983(3)$	Mn3-O51	$2.153(3)$
Mn1-O21	$2.153(3)$	Mn3-O91	$2.160(3)$
Mn1-O52	$2.201(3)$	Mn3-O1	$2.167(3)$
Mn2-O1	$1.830(3)$	Mn3-O32	$2.188(3)$
Mn2-O22	$1.956(3)$	Mn1 \cdots Mn2	$3.2223(12)$
Mn2-O31	$1.981(3)$	Mn1 \cdots Mn3	$3.4126(13)$
Mn2-O81	$1.989(3)$	Mn2 \cdots Mn3	$3.4521(16)$
Mn2-O41	$2.178(3)$		
Mn1-O1-Mn2	$123.61(15)$	Mn2-O1-Mn3	$119.18(14)$
Mn1-O1-Mn3	$117.18(14)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O72-H72 \cdots O52	0.78 (6)	1.85 (6)	2.621 (4)	168 (6)
O82-H82 . O 41	0.75 (6)	1.98 (6)	2.641 (4)	149 (6)
$\mathrm{O} 92-\mathrm{H} 92 \cdots \mathrm{O} 32$	0.72 (7)	2.16 (7)	2.815 (5)	151 (7)
C72-H72B \cdots O91 ${ }^{\text {i }}$	0.98	2.37	3.142 (5)	135
C72-H72C..OO81 ${ }^{\text {ii }}$	0.98	2.46	3.367 (5)	155
C92-H92C. ${ }^{\text {O }} 72^{\text {iii }}$	0.98	2.52	3.243 (6)	130

Symmetry codes: (i) $x, y-1, z$; (ii) $x-1, y, z$; (iii) $x, y+1, z$.
All H atoms were found in difference Fourier maps. The coordinates of the hydroxy H atoms were refined. The C -bound H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.98 \AA$, and $U_{\text {iso }}(\mathrm{H})=$

metal-organic papers

$1.2 U_{\text {eq }}(\mathrm{O})$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The torsion angles of the methyl groups were refined.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: enCIFer (Allen et al., 2004).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Baikie, A. R. E., Hursthouse, M. B., New, L., Thornton, P. \& White, R. G. (1980). Chem. Commun. 15, 684-685.

Brandenburg, K. (2005). DIAMOND. Version 3.0. Crystal Impact, Bonn, Germany.
Cañada-Vilalta, C., Streib, W. E., Huffman, J. C., O'Brien, T. A., Davidson, E. R. \& Christou, G. (2004). Inorg. Chem. 43, 101-115.

Kim, J. \& Cho, H. (2004). Inorg. Chem. Commun. 7, 122-124.
Li, J., Zhang, F., Shi, Q., Wang, J., Wang, Y. \& Zhou, Z. (2002). Inorg. Chem. Commun. 5, 51-55.
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland..
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shova, S. G., Turyatke, L. G., Novitskii, G. V., Mazus, M. D. \& Gulya, A. P. (1996). Koord. Khim. 22, 517-519.

Tsai, H. L., Jwo, T. Y., Yang, C. I., Wur, C. S., Lee, G. H. \& Wang, Y. (2003). J. Chin. Chem. Soc. 50, 1139-1146.
Vincent, J. B., Chang, H. R., Folting, K., Huffman, J. C., Christou, G. \& Hendrickson, D. N. (1987). J. Am. Chem. Soc. 109, 5703-5711.
Zhao, H., Berlinguette, C. P., Basca, J., Tichy, S. E. \& Dunbar, K. R. (2003). J. Cluster Sci. 14, 235-252.

